Instructive Cultivation Plan for the Program of Telecommunication Engineering

(Grade 2019)

Course code: 080703

I. Orientation

According to the "career-oriented application higher education" orientation of our school, the Telecommunication Engineering program explores and implements the strategy of "differentiated competition", focuses on the key areas of the communication industry development while consolidating the theoretical foundation, and works hand in hand with industry leaders to vigorously strengthen students' Telecommunication Engineering practice ability. At the same time, this program pays more attention to the training and exercise of students' professional quality during on-the-job internships, and aims to cultivate technical and application-oriented senior engineering talents with "high-quality and strong application innovation ability" in the field of Telecommunication Engineering for Shanghai, the Greater Yangtze River Delta and the whole country.

II. Cultivation Objectives

1. General cultivation objective

The Telecommunication Engineering program aims at cultivating application-oriented senior engineering talents who can serve the socialist modernization construction, are comprehensive developed on the aspects of morality, intelligence, physical education and labor, have high cultural quality, professionalism and social responsibility, master basic theoretical knowledge of Telecommunication Engineering and related programs, have strong self-study ability and engineering practice ability, and can be engaged in communication system design, development, production, testing, and communication network planning, networking, optimization, operation, management and maintenance in the key areas of communication.

2. Objective of value guidance

Taking the cross-generational evolution of mobile communication from 1G to 5G as the main line, this program tells the leap of our country's communication technology from following, equaling, exceeding and leading; to achieve this leap, it is inseparable from the arduous struggle of the communicators and the reward of heaven. The Telecommunication Engineering program will strengthen students' sense of crisis, urgency, and mission through general education ideological and political courses, communication courses ideological and political courses, and aims at cultivating excellent quality graduates of communications engineering who are comprehensively developed on the aspects of morality, intelligence, physical education and labor, and possess outstanding qualities such as hard work, perseverance, love and dedication, etc.

3. Objectives students must achieve five years after graduation:

Graduates can achieve the following objectives about five years after graduation:

(1) Have a sound personality, good scientific and cultural literacy, social responsibility and professional ethics, and can comprehensively consider the influence of law, environment, society, culture and sustainable development in the engineering time;

(2) Master the basic knowledge of Telecommunication Engineering, related mathematical and physical foundations and engineering technology principles, and possess the professional qualities

and basic skills of engineers;

(3) Master the standards, norms and regulations related to the professional direction of Telecommunication Engineering, have strong engineering innovation capabilities, and be able to solve complex engineering problems;

(4) Have good teamwork and communication skills, have engineering project management and organization and coordination capabilities, and be able to play a leading or backbone role in Telecommunication Engineering tasks.

(5) Possess independent, life-long learning habits and abilities, be able to timely understand and track domestic and foreign technological development trends, can continuously improve their professional qualities, and respond to future challenges.

III. Requirement for Graduation

1. Engineering knowledge: be able to solve complex Telecommunication Engineering problems with mathematical knowledge, natural science, engineering foundation and professional knowledge required by Telecommunication Engineering program. Possess engineering knowledge: master the relevant mathematics, natural sciences, engineering foundation and communication-related professional knowledge required for Telecommunication Engineering, and can use them to solve complex communication system development, system integration, maintenance and other related engineering problems.

1.1 Master the knowledge of advanced mathematics, linear algebra, probability theory, complex variable functions, and university physics required for Telecommunication Engineering program;

1.2 Master engineering foundation and communication-related professional knowledge and can use them to solve related engineering problems such as communication system development, system integration, and maintenance;

1.3 Master the professional knowledge of communication network, and be able to solve basic problems such as communication network planning, networking, optimization, operation, management and maintenance.

2. Problem analysis: Be able to apply mathematics, natural sciences, engineering foundations, and communication-related professional knowledge to analyze, identify, and express, and can obtain effective conclusions through independent learning, literature research and analysis of complex engineering problems.

2.1 Be able to apply basic principles of mathematics and natural sciences, engineering foundations and professional knowledge to identify and express complex engineering problems such as communication networks, information transmission, and signal processing;

2.2 Be able to apply professional basic theories and software and hardware methods to identify and analyze the key links and parameters of complex engineering problems;

2.3 Be able to analyze and solve complex engineering problems in the field of Telecommunication Engineering with the help of literature research, and obtain effective conclusions.

3. Design/development solutions: be able to design more complex communication system integration solutions, design and develop communication terminal products that meet specific needs of which the design and development products conform to the standards of the communication industry, and reflect the sense of innovation in their design and development.

3.1 Be able to master the engineering design concepts, principles and methods involved in this program, and be able to determine design requirements for complex engineering problems in the

communications field;

3.2 Be able to apply professional basic knowledge and principles to complete the software/hardware design plan of the system and module for specific needs, and be able to reflect the sense of innovation in the design;

3.3 In the system plan design link, can consider the influence of social, health, safety, legal, cultural and environmental factors.

4. Research: Graduates can understand the basic principles of Telecommunication Engineering, be able to use Telecommunication Engineering methods to model, analyze, design and test Telecommunication Engineering problems, and can analyze and optimize models through experimental results.

4.1 Be able to perform theoretical analysis and simulation of software and hardware modules in the communication field.

4.2 Be able to design experimental programs for complex engineering problems in communication fields such as communication networks, information transmission, and signal processing, and select reasonable experimental materials and equipment to construct experimental systems.

4.3. Be able to reasonably analyze, interpret and evaluate the experimental results, and propose improvement plans, so as to provide support for the solution of complex engineering problems.

5. Use modern tools: master programming languages such as Matlab, C/C++, Java, master DSP, ARM and other hardware development tools, familiar with mobile communication base station commissioning, network planning and network optimization software, familiar with communication testing software, and be able to develop, select and use appropriate technologies, resources, modern engineering tools and information technology tools for complex engineering problems, including the prediction and simulation of complex engineering problems.

5.1 Master basic computer operations and applications, grasp software development languages, system analysis and design and simulation tools commonly used in professional fields, and be able to use integrated development environment for complex program design;

5.2 Master the basic principles and operating methods of professional instruments and equipment in Telecommunication Engineering field, and be able to select and use instruments and equipment in a complex and comprehensive project reasonably;

5.3 Be able to use experimental equipment, computer software and modern information tools to simulate or simulate complex engineering problems in the communication system, and understand the requirements, scope and limitations of their use.

6. Engineering and society: be able to bear social responsibility: be able to conduct reasonable analysis based on the background knowledge of Telecommunication Engineering, evaluate the impact of professional engineering practices and complex engineering problem solutions on society, health, safety, law and culture, and understand the responsibilities to be undertaken.

6.1 Understand relevant technical standards, intellectual property rights, industrial policies, laws and regulations in the field of Telecommunication Engineering;

6.2 Be able to combine relevant engineering knowledge to analyze and evaluate the impact of professional engineering practices and solutions to complex engineering problems on society, health, safety, law, and culture.

7. Environment and sustainable development: be able to understand and evaluate the impact of professional engineering practices for complex engineering issues on the environment and

sustainable development of society.

7.1 Understand the connotation of environmental protection and sustainable social development and related guidelines, policies, laws and regulations, and be able to correctly understand the impact of professional engineering practices for complex engineering issues on the environment and society;

7.2 In view of actual complex engineering problems, always consider the constraints of environment and sustainable development, correctly evaluate the impact of professional engineering practices on the environment and sustainable development of society, and assume corresponding responsibilities.

8. Professional standards: Have basic humanities and social science literacy and a sense of social responsibility, be able to understand and abide by the professional ethics and standards of Telecommunication Engineering in engineering practices, and can perform responsibilities.

8.1 Understand the core values of socialism, understand national conditions, safeguard national interests, be able to establish a correct political stand, world outlook, outlook on life and values;

8.2 Understand the professional nature and social responsibilities of communications engineers, and consciously abide by professional ethics and regulations in engineering practice.

9. Individuals and teams: be able to effectively communicate and exchange with industry colleagues and the public on complex engineering issues in the communications field, including writing reports and design manuscripts, making statements, expressing clearly or responding to instructions, have a certain international perspective, and be able to communicate and exchange under a cross-cultural context.

9.1 Be able to play the roles of individuals and team members in multidisciplinary projects covering communications engineering, give full play to their professional expertise, take the initiative to communicate effectively with other members, and cooperate in work;

9.2 Understand the organization and management of the team, be able to handle the interpersonal relationship of team members, and can give full play to the advantages of teamwork.

10. Communication: Be able to effectively communicate and exchange with industry colleagues and the public on complex engineering issues, including writing reports and design manuscripts, making statements, expressing clearly or responding to instructions, have a certain international perspective and be able to communicate and exchange under a cross-cultural context.

10.1 For complex engineering issues in the communications field, be able to express design ideas, methods and results in written and oral forms, and can communicate effectively with industry colleagues and the public;

10.2 Possess English listening, speaking, reading and writing skills, be familiar with professional vocabulary, be able to read professional related English literature, and understand the international development of the communications industry.

11. Project management: understand and master Telecommunication Engineering management principles and economic decision-making methods, and be able to apply them in a multi-disciplinary environment.

11.1 Understand the importance of project management and economic decision-making, master the basic principles of project management and common economic decision-making methods;

11.2 Be able to apply management principles and economic decision-making to the management of Telecommunication Engineering projects.

12. Lifelong learning: have the consciousness of independent learning and lifelong learning, and have the ability to continuously learn and adapt to development.

12.1 Understand the characteristics of the development of communication technology, have the awareness of independent learning and lifelong learning, and be able to actively adapt to the development of technology;

12.2 Through self-study training in the process of solving complex engineering problems, master the methods of self-learning and have the ability to continuously learn and adapt to development.

IV. Schooling System

Four years

V. Length of Study

Flexible study period, generally four years, the minimum length of flexibility is not less than three years, the longest not more than six years.

VI. Requirements for Graduation and Degree Conferring

Students of this program must complete the minimum credits required for each category of courses and complete all the content specified in extracurricular class according to the requirements of the instructional training plan, and the total credits must reach 151 credits for graduation; those who meet the requirements for bachelor's degree can be conferred bachelor degree in engineering.

VII. Discipline

The main discipline of this program is Information and Telecommunication Engineering, and the closely related disciplines include: Electronic Science and Technology, Computer Science and Engineering, etc.

VIII. Core Courses

1. Fundamentals of Circuit Analysis

This course mainly teaches sinusoidal circuits, linear circuits, DC circuits, transformers, RLC circuit transition processes, electrical control circuits, etc.

2. Analog electronics technology

This course teaches the principles and application technologies of diodes, triodes, amplifier circuits, power amplifiers, oscillator circuits, analog integrated circuits, functional module circuit.

3. Digital Electronic Technology

This course teaches the design of number system, combinational logic, sequential logic, A/D, D/A, medium and large-scale integrated circuits, and various digital logic circuits.

4. Electronic circuit of communication

This course teaches the basic principles and composition of signal reception and transmission, mixing, intermediate amplifier, detection, frequency modulation and amplitude modulation, frequency discrimination, phase lock and frequency synthesis, and the functions and application technologies of each unit circuit.

5. Signals and Systems

This course mainly discusses the time domain and frequency domain analysis of deterministic signals, description and characteristics of linear time invariant systems, and time domain analysis and transform domain analysis of signals passing through linear time invariant systems. Through the study of this course, students will master the basic theories and methods of using signals and systems to analyze and solve practical problems.

6. Digital signal processing and DSP technology application

This course teaches the basic theories, basic analysis methods, basic algorithms and design methods of digital signal processing. It teaches the architecture and basic principles of Digital Signal Processor (DSP), so that students will be familiar with the development tools and use of DSP, and master the software and hardware design of DSP system and the development method of digital signal processing application system.

7. Electromagnetic field and antenna

This course teaches the basic properties, propagation characteristics, propagation methods, and propagation methods of electromagnetic fields and electromagnetic waves, including the physical and mathematical foundations of electromagnetic field theory, alternating electromagnetic fields and uniform plane waves, electromagnetic waves in regular waveguides, electromagnetic wave radiation and electromagnetic wave propagation, etc.

8. Principle of communication

This course teaches the concepts of communication media, communication services, signals, bandwidth, modulation, coding, etc., the basic principles of digital and analog communication, the specific composition of wired communication systems, and the working principles of related communication equipment.

9. Mobile Communication Course Module (Module A)

Taking the cross-generation evolution of mobile communication technology as the main line and with actual engineering tasks as the orientation, this course mainly teaches the basic principles of 2G to 4G mobile communication systems and the design, construction, management and optimization technology of modern mobile communication networks.

10. Data Communication Course Module (Module B)

Conduct systematic analysis on the key technologies and solutions involved in data communication, teach the whole process of data communication network engineering from planning, selection, construction, testing to management, and finally enables students to design, build, manage and maintain medium-scale commercial networks.

11. Fixed network communication course module (module C)

Relying on optical fiber communication technology, modern switching technology and broadband access technology, this course systematically teaches the architecture, design and construction of modern fixed communication networks, as well as the integrated development and application of various communication services.

12. Communication system development course module (module D)

Taking information acquisition, analysis and processing, storage and query as the main line, this course teaches the software and hardware development principles and methods of communication and information systems, so that students can understand and master typical embedded systems, database systems, fixed-line communications and mobile communications development technologies.

IX. Practical Training (Related courses)

Practical teaching of various courses, program design and practice, data structure and algorithm course practice, circuit design simulation practice, computer composition course practice, MCU course design, innovation practice, Telecommunication Engineering pre-job training, Telecommunication Engineering internship, Telecommunication Engineering program Internship and graduation project (thesis).

Category	Total Credit	%	Total Course Hours	Theory Learning	Practical Training
Public Course	50	33	944	880	64
Basic Course	37	24	592	464	128
Professional Course	28	19	448	324	124
Practical Training	25	17	744	0	744
General Course	10	7	160	160	0
Total	150	100	2888	1828	1060
Theory : Practice(%)			63:37		

X. Course Structure and Course Hours (excluding extracurricular class)

XI. Teaching schedule (1)

Category	Туре	Provided by	Course Code	Course Name	Assessment	Credit	Course Hour	Theory Learning	Practical Training	Semester
	Required	Basic principles of Marxism	b1080001	Basic principles of Marxism	Test	3	48	42	6	Spring 1
	Required	Basic principles of Marxism	b1080003	Ideological and moral cultivation and legal foundation	Non-test	3	48	42	6	Spring 1
	Required	Basic principles of Marxism	b1080006	Outline of Chinese Modern History	Non-test	3	48	42	6	Autumn 1
	Required	Basic principles of Marxism	b1080004	Introduction to Mao Zedong Thought and the Theoretical System of Socialism with Chinese Characteristics I	Test	3	48	42	6	Autumn 2
	Required	Basic principles of Marxism	b1080007	Introduction to Mao Zedong Thought and the Theoretical System of Socialism with Chinese Characteristics II	Test	2	32	28	4	Spring 2
	Required	Basic principles of Marxism		Situation and Policy (Module 1~4)	Non-test	2	32	28	4	Autumn 1~Spring 2
	Required	College of Arts and Sciences	b1020080+	Advanced Mathematics A1	Test	4	64	64		Autumn 1
	Required	College of Arts and Sciences	b1020081+	Advanced Mathematics A2	Test	4	64	64		Spring 1
General	Required	College of Arts and Sciences	b1020012	Linear algebra	Test	2	32	32		Autumn 2
Education	Required	College of Arts and Sciences	b1020013	Probability Theory and Mathematical Statistics	Test	2	32	32		Autumn 2
Basic	Required	College of Arts and Sciences	b1020018	College Chinese	Non-test	2	32	32		Spring 1
Course	Required	College of Arts and Sciences	b1020063	College Physics A(Module 2)	Test	3	48	48		Spring 1
	Required	College of Arts and Sciences	b1020065	College Physics B	Test	2	32	32		Autumn 2
	Required	College of Arts and Sciences	b1020066	College Physics C	Non-test	1	32		32	Autumn 2
	Required	Department of Physical Education		Physical Education I~VI	Non-test	3	160	160		Autumn 1~Autumn 4
	Required	Others	b1110003	Military skills	Non-test	0.5	2W			Autumn 1
	Required	College of Arts and Sciences	b1110002	Military theory	Non-test	0.5	32	32		Autumn 2
	Required	College of Arts and Sciences	b1020003	General English III	Test	3	48	48		Autumn 1
	Required	College of Arts and Sciences	b1020004	General English IV	Test	3	48	48		Spring 1
	Required	College of Arts and Sciences	b1020005	General Academic English A	Test	2	32	32		Autumn 2
	Required	College of Arts and Sciences		English development	Non-test	2	32	32		Spring 2
		-	Total (Gener	al Education Basic Courses)		50	944	880	64	
	Required	College of Engineering	b1020018	Scientific paper writing and document retrieval	Non-test	2	32	32		Spring 1
General				Social Science and Humanities Literacy (4 credits)						
Course	Selective	Others	b0	Natural Science and Technological Innovation (2 credits)	Non-test	8	128	128		Autumn , Spring
				Public Art (2 credits)						
			Subt	otal (general course)		10	160	160	0	

XI. Teaching schedule (2)

Category	Туре	Provided by	Course Code	Course Name	Assessment	Credit	Course Hour	Theory Learning	Practical Training	Semester
	Required	College of Arts and Sciences	b1020023	Complex function and integral transformation	Non-test	2	32	32		Spring 2
	Required	Work training	b2090008	Fundamentals of Circuit Analysis	Test	3	48	48		Spring 1
	Required	Work training	b2012061	Analog electronics technology	Test	4	64	48	16	Autumn 2
	Required	Work training	b2012099	Digital Electronic Technology	Test	3	48	36	12	Spring 2
Basic	Required	College of Engineering	b2012283	Signals and Systems	Test	4	64	48	16	Spring 2
professional	Required	College of Engineering	b2012284	Digital signal processing and DSP technology application	Test	4	64	44	20	Autumn 3
courses	Required	College of Engineering	b2012018	Fundamentals of programming design	Test	4	64	40	24	Autumn 1
	Required	College of Engineering	b2012046	Principles of Computer Organization	Test	3	48	42	6	Spring 2
	Required	College of Engineering	b2012285	Communication principle	Test	4	64	48	16	Spring 3
	Required	College of Engineering	b2012131	Information Theory Foundation	Non-test	2	32	32		Spring 3
	Required	College of Engineering	b2012286	Electromagnetic field and antenna (English teaching)	Test	3	48	36	12	Autumn 3
	Required	College of Engineering	b2012176	Introduction to Telecommunication Engineering	Non-test	1	16	10	6	Autumn 1
			Subtotal	(Basic professional courses)		37	592	464	128	
	Required	College of Engineering	b2012020	Principle and Application of Single Chip Microcomputer	Test	2	32	22	10	Spring 2
	Required	College of Engineering	b2012287	Electronic circuit of communication	Test	3	48	40	8	Autumn 3
	Required	College of Engineering	b2012005	EDA TECHNOLOGY AND APPLICATION	Non-test	2	32	16	16	Spring 3
	Required	College of Engineering	b2012084	Data Structures and Algorithms	Test	3	48	48		Spring 1
	Required	College of Engineering	b2012006	Java programming	Non-test	2	32	20	12	Spring 2
			Sut	ototal (required professional courses)		12	192	146	46	
		Module A	b2012187	Fundamentals of Mobile Communication	Non-test	2	32	32	0	Autumn 3
			b2012188	4G mobile communication technology	Non-test	2	32	24	8	Autumn 3
			b2012189	Network planning and optimization	Non-test	2	32	20	12	Spring 3
			b2012190	Fourth-generation mobile communication hardware and commissioning technology	Non-test	2	32	20	12	Spring 3
D f!1			b2012090	Fundamentals of Data Communication	Non-test	2	32	32	0	Autumn 3
Professional	*	Modula P	b2012172	Routing and switching	Non-test	2	32	18	14	Autumn 3
courses	Selective by	Module B	b2012173	Extended network design	Non-test	2	32	16	16	Spring 3
	module		b2012038	WAN access technology	Non-test	2	32	16	16	Spring 3
	Selective		b2012125	Modern exchange technology	Non-test	2	32	20	12	Autumn 3
	2 Modules	Modula C	b2012069	Converged communication	Non-test	2	32	26	6	Autumn 3
	16 credits	Module C	b2012034	Basics of Optical Communication	Non-test	2	32	20	12	Spring 3
			b2012054	Broadband Access Technology and Application	Non-test	2	32	22	10	Spring 3
			b2012065	Application of embedded system	Non-test	2	32	24	8	Autumn 3
		Medula D	b2012089	Database principle and application	Non-test	2	32	20	12	Autumn 3
		Module D	b2012288	Fixed-line communication development technology	Non-test	2	32	22	10	Spring 3
1			b2012289	Mobile communication development technology	Non-test	2	32	24	8	Spring 3
			Su	btotal (professional course modules)		16	256	178	78	
	Subtotal (professional courses)					28	448	324	124	

XI. Teaching schedule (3)

Category	Туре	Provided by	Course Code	Course Name	Assessment	Credit	Course Hour	Theory Learning	Practical Training	Semester
	Required	Work training	b4090002	Basic engineering training B	Non-test	2	48		48	Autumn 1
	Required	College of Engineering	b4012004	Program design and practice	Non-test	1	24		24	Summer 1
	Required	College of Engineering	b4012050	Data Structures and Algorithms course practice	Non-test	2	48		48	Summer 1
	Required	College of Engineering	b4012009	Circuit design simulation practice	Non-test	1	24		24	Summer 2
Manadianal	Required	College of Engineering	b4012032	Computer Composition Course Internship	Non-test	2	48		48	Summer 2
vocational	Required	College of Engineering	b4012007	MCU Course Design	Non-test	2	48		48	Summer 2
practice	Required	College of Engineering	b4000016	Innovation and Entrepreneurship in Telecommunication Engineering	Non-test	2	48		48	Spring 3
	Required	College of Engineering	b4012099	Telecommunication Engineering pre-job training	Non-test	4	96		96	Summer 3
	Required	College of Engineering	b4012100	On-the-job internship in Telecommunication Engineering	Non-test	3	72		72	Autumn 4
	Required	College of Engineering	b4012132	Graduation practice and graduation design (thesis) of Telecommunication Engineering	Non-test	6	288		288	Spring 4
				Subtotal (professional practice)		25	744		744	
Extracurricular Class	Required	Others	b5110001	Extracurricular Class	Non-test	1	-	-	-	Autumn , Spring , Summer
				Total		151	2888	1828	1060	

Professional Certificates can be gained after learning following courses:

Students who have passed the courses of Fundamentals of Mobile Communication, 4G mobile communication technology, Network planning and optimization, Fourth-generation mobile communication hardware and commissioning technology can participate in the professional qualification certificate assessment related to their program: Nokia Siemens Networks Certification-Equipment and Commissioning, Nokia Siemens Networks certification-network optimization network planning.

Students who have obtained NSN certification-base station, NSN certification-network optimization and network planning, can apply for exemption from Fourth-generation mobile communication hardware and commissioning technology, Network planning and optimization courses and obtain corresponding credits.

Students who have passed the courses of Fundamentals of Data Communication, Routing and switching, Extended network design, and WAN access technology can participate in the vocational qualification certificate assessment related to this program: CCNA is the primary certification.

XII. Schedule for Semesters (Suggested)

Autumn semester1:

Туре	Course Name	Assessment	Credit	Course Hour
Required	Outline of Chinese Modern History	Non-test	3	48
Required	First Foreign Language	Test	3	48
Required	Advanced Mathematics A1	Test	4	64
Required	Situation and Policy	Non-test	0.5	8
Required	Physical Education I	Non-test	0.5	32
Required	Military skills	Non-test	0.5	2W
Required	Fundamentals of programming design	Test	4	64
Required	Introduction to Telecommunication Engineering	Non-test	1	16
Required	Basic engineering training B	Non-test	2	48

Spring semester 1:

Туре	Course Name	Assessment	Credit	Course Hour
Required	Basic principles of Marxism	Test	3	48
Required	Ideological and moral cultivation and legal foundation	Non-test	3	48
Required	First Foreign Language	Test	3	48
Required	Advanced Mathematics A2	Test	4	4
Required	College Physics A	Test	3	48
Required	College Chinese	Non-test	2	32
Required	Situation and Policy	Non-test	0.5	8
Required	Physical Education II	Non-test	0.5	32
Selective	General Course	Non-test	2	32
Required	Scientific paper writing and document retrieval	Non-test	2	32
Required	Fundamentals of Circuit Analysis	Test	3	48
Required	Data Structures and Algorithms	Test	3	48

Summer semester 1:

Туре	Course Name	Assessment	Credit	Course Hour
Required	Program design and practice	Non-test	1	24
Required	Data Structures and Algorithms course practice	Non-test	2	48

Autumn semester 2:

Туре	Course Name	Assessment	Credit	Course Hour
Required	Introduction to Mao Zedong Thought and the Theoretical System of Socialism with Chinese Characteristics I	Test	3	48
Required	Military theory	Non-test	0.5	32
Required	First Foreign Language	Test	2	32
Required	Linear algebra	Test	2	32
Required	Probability Theory and Mathematical Statistics	Test	2	32
Required	College Physics B	Test	2	32
Required	College Physics C	Non-test	1	32
Required	Situation and Policy	Non-test	0.5	8
Required	Physical Education III	Non-test	0.5	32
Selective	General Course	Non-test	2	32
Required	Analog electronics technology	Test	4	64

Spring semester 2 :

Туре	Course Name	Assessment	Credit	Course Hour
De mine d	Introduction to Mao Zedong Thought and the	T4	2	22
Required	Characteristics II	Test	2	32
Required	First Foreign Language	Non-test	2	32
Required	Situation and Policy	Non-test	0.5	8
Required	Physical Education IV	Non-test	0.5	32
Selective	General Course	Non-test	2	32
Required	Complex function and integral transformation	Test	2	32
Required	Digital Electronic Technology	Test	3	48
Required	Principles of Computer Organization	Test	3	48
Required	Signals and Systems	Test	4	64
Paguirad	Principle and Application of Single Chip	Test	2	22
Required	Microcomputer	Test	Z	52
Required	Java programming	Non-test	2	32

Summer semester 2:

Туре	Course Name	Assessment	Credit	Course Hour
Required	Circuit design simulation practice	Non-test	1	24
Required	Computer Composition Course Internship	Non-test	2	48
Required	MCU Course Design	Non-test	2	48

Autumn semester 3:

Туре	Course Name	Assessment	Credit	Course Hour
Required	Physical Education V	Non-test	0.5	16
Selective	General Course	Non-test	2	32
Required	Digital signal processing and DSP technology application	Test	4	64
Required	Electromagnetic field and antenna	Test	3	48
Required	Electronic circuit of communication	Test	3	48
	Fundamentals of Mobile Communication	Non-test	2	32
	4G mobile communication technology	Non-test	2	32
•	Fundamentals of Data Communication	Non-test	2	32
	Routing and switching	Non-test	2	32
Elective by	Modern exchange technology	Non-test	2	32
module	Converged communication	Non-test	2	32
	Application of embedded system	Non-test	2	32
	Database principle and application	Non-test	2	32

Spring semester 3:

Туре	Course Name	Assessment	Credit	Course Hour
Required	Information Theory Foundation	Non-test	2	32
Required	EDA TECHNOLOGY AND APPLICATION	Non-test	2	32
Required	Communication principle	Test	4	64
	Network planning and optimization	Non-test	2	32
×	Fourth-generation mobile communication hardware and	Non-test	2	32

Elective by	commissioning technology			
module	Extended network design	Non-test	2	32
	WAN access technology	Non-test	2	32
	Basics of Optical Communication	Non-test	2	32
	Broadband Access Technology and Application	Non-test	2	32
	Fixed-line communication development technology	Non-test	2	32
	Mobile communication development technology	Non-test	2	32
Required	Innovation and Entrepreneurship in Telecommunication	Non-test	2	48
Required	Engineering	1 ton-test	2	-10

Summer semester 3:

Туре	Course Name	Assessment	Credit	Course Hour
Required	Telecommunication Engineering pre-job training	Non-test	4	96

Autumn semester 4:

Туре	Course Name	Assessment	Credit	Course Hour
Required	Physical Education VI	Non-test	0.5	16
Required	Required On-the-job internship in Telecommunication Engineering		3	72

Spring semester 4:

Туре	Course Name	Assessment	Credit	Course Hour
Required	Graduation practice and graduation design (thesis) of Telecommunication Engineering	Non-test	6	288

XIII. Prerequisite for Course Study

No.	Course name	Prerequisite Course	No.	Course name	Prerequisite Course
1	Analog electronics technology Digital Electronic Technology	Fundamentals of Circuit Analysis	8	Basics of Optical Communication	Modern exchange technology
				Broadband	Converged communication
				Access Technology and Application	
		Analog electronics technology		Mobile	Application of embedded system
		Digital Electronic Technology	9	communication	Database principle and application
2	Signals and Systems			development technology Fixed-line communication development technology	JAVA PROGRAMMING
3	Digital signal processing and DSP technology application	Signals and Systems	10	Network planning and optimization	Fundamentals of Mobile Communication
		Principle and Application of Single Chip Microcomputer		Next-generation mobile	4G mobile communication technology
		~ ^ ^		communication	C
				hardware and commissioning technology	
	Electromagnetic field and electromagnetic wave	Analog electronics technology	11	Extended network design WAN access technology	Fundamentals of Data Communication
4		Digital Electronic Technology			Routing and switching
		Signals and Systems			
5	Information Theory Foundation	Probability Theory and Mathematical Statistics	12	Data Structures and Algorithms	Fundamentals of programming design
6	Electronic circuit of communication	Analog electronics technology	- 13	Communication principle	Digital signal processing and DSP technology application
0		Digital Electronic Technology			Signals and Systems
7	EDA TECHNOLOGY AND APPLICATION	Analog electronics technology	14	Application of embedded system	Fundamentals of programming design
		Digital Electronic Technology			Principle and Application of Single Chip Microcomputer
		Principle and Application of Single Chip Microcomputer			
		Electronic circuit of communication			

XIV. Extracurricular Class

Through taking extracurricular classes, students are encouraged to take part in academic lectures, social practice activities, campus cultural and sports activities, innovative and entrepreneurial activities, voluntary activities, etc. to improve their social adaptability and enhance the competitiveness in the job market. Details are specified in Students' Manual.