# Software Engineering 

(Grade 2022)

## Course code: 080902

## I. Cultivation Objectives

1. General cultivation objective

The program takes the fundamental task of establishing moral education to cultivate high quality application-oriented talents with comprehensive development of moral, intellectual, physical, aesthetic and labor, who have a solid foundation of computer theory, good software design and development ability, and can engage in system analysis, design, development, testing and operation and maintenance in the field of software engineering.

## 2. Objective of value guidance

The aim is to cultivate application-oriented engineering talents who can adapt to the development of society. In the process of education and teaching, the values of engineers and engineering professional ethics are taught to students, so as to cultivate students with good moral, humanistic, scientific and professional qualities, and to cultivate software talents with international perspective, social responsibility, practicality and honesty, team cooperation ability, lifelong learning ability, innovation spirit and hard-working.
3. Five years after graduation, students in this program should achieve the following objectives:
(1) Have a sound personality, good scientific and cultural literacy, a sense of social responsibility and professional ethics, and the ability to integrate legal, environmental, social, cultural and sustainable development impacts in the practice of Software Engineering.
(2) Have a basic knowledge of Software Engineering, relevant mathematical and scientific fundamentals and engineering design principles, and have professionalism and good skills as a Software Engineer.
(3) Have knowledge of the standards, specifications and regulations related to Software Engineering, and have strong innovative practical skills and the ability to solve complex Software Engineering problems.
(4) Have good communication skills, teamwork and project management skills, able to communicate effectively with peers and clients domestic and international, and grow into the core player and high-level talent of the industry.
(5) Master autonomous and lifelong learning habits and abilities, be able to keep abreast of and follow up on domestic and international technology trends, and continuously improve their professionalism to meet future challenges.

## II. Graduation requirements

1. engineering knowledge: Have the ability to apply mathematical, natural science and engineering fundamentals and expertise to complex engineering problems in computing.
1-1: Be able to apply the mathematical, natural science, and engineering foundations and expertise necessary for the Program of Software Engineering to formulate Software Engineering problems.

1-2: Be able to develop mathematical models and program designs for specific objects.
1-3: Be able to apply relevant knowledge and mathematical models to the derivation and analysis of solutions to complex Software Engineering problems.

1-4: Be able to apply relevant knowledge and mathematical modelling methods to the comparison and synthesis of

## Software Engineering solutions

2. Analysis of the Problem: Have the ability to apply basic principles of mathematics, natural science, and engineering science to identify, represent, and analyze complex Software Engineering problems through literature research in order to reach valid conclusions.

2-1: Be able to apply the basic principles of mathematics, natural science and engineering mathematics to identify and determine the key aspects of complex Software Engineering problems and determine the main technical specifications.

2-2: Be able to correctly represent complex Software Engineering problems based on relevant scientific principles and mathematical modelling methods.

2-3: Be able to recognize that there are multiple options available for solving problems and will seek alternative and alternate solutions through literature research.

2-4: Be able to apply the basic principles of Software Engineering to analyse the influencing factors of processes and draw valid conclusions with the aid of literature research.
3. Design/develop of solutions: Have the ability to design solutions to complex Software Engineering problems and develop systems, modules or processes to meet specific needs, and to demonstrate a sense of innovation in the design and development process, taking into account social, health, safety, legal, cultural and environmental considerations.

3-1: Have knowledge of basic design/development methods and techniques for the full cycle and process of engineering design and product development, and understanding of the factors that influence design objectives and technical solutions.

3-2: Have ability to complete requirements analysis, design, coding and testing of software systems for specific requirements.
3-3: Be able to undertake software system design and demonstrate a sense of innovation in their design.
3-4: Have ability to consider safety, health, legal, cultural and environmental constraints in the design.
4. Research: Have the ability to apply scientific principles and methods to complex Software Engineering problems, including designing experiments, analyzing and interpreting data, and synthesizing information to reach valid conclusions.

4-1: Be able to investigate and analyse solutions to complex Software Engineering problems based on scientific principles of Software Engineering and related disciplines, through literature research or related methods.

4-2: Be able to choose a line of research and design an experimental program for a software system based on the characteristics of the object.

4-3: Be able to carry out experiments safely and collect experimental data correctly according to the experimental protocol.

4-4: Be able to analyse and interpret experimental results and synthesize information to reach reasonable and valid conclusions.
5. Use of modern tools: Have the ability to develop, select and use appropriate techniques, resources, modern engineering tools and information technology tools for complex Software Engineering problems, including analysis, design, implementation, prediction, simulation and testing of complex Software Engineering problems, and to understand their limitations.

5-1: Have knowledge of information technology tools (development tools, modelling tools, Project Management
tools, testing tools, etc.), environments and platforms commonly used in the field of Software Engineering, and the ability to understand the differences and areas of application of these tools, environments and platforms.

5-2: Be able to select appropriate tools, environments and platforms for the analysis, design and implementation of complex Software Engineering problems.

5-3: Be able to simulate and test systems, predict professional problems and be able to analyse their limitations by selecting modern information tools that meet specific needs for specific audiences.
6. Engineering and Society: Be able to undertake sound analysis based on background knowledge of Software Engineering and evaluate the social, health, safety, legal and cultural impacts of engineering practices and solutions to complex Software Engineering problems, and understand the responsibilities involved.

6-1: Understand the technical standards system, intellectual property rights, industrial policies and laws and regulations in areas related to the Program of Software Engineering, and understand the impact of different social cultures on Software Engineering activities.
$6-2$ : Be able to analyse and evaluate the social, health, safety, legal and cultural implications of solutions to complex Software Engineering problems based on real-world application scenarios, and the impact of these constraints on project implementation, and understand the responsibilities to be taken.
7. Environment and Sustainable Development: Have the ability to understand and evaluate the environmental and social sustainability implications of engineering practices for complex Software Engineering problems.
$7-1$ : Be able to understand and evaluate the dialectical relationship between solutions to complex Software Engineering problems, professional engineering practice and environmental and social sustainability.

7-2: Be able to consider environmental and social harmony and sustainability in the solution of complex Software Engineering problems
8. Professional Codes: Have humanistic, artistic, social and scientific literacy and social responsibility. Understand and comply with engineering ethics and codes of practice and perform duties in the practice of software engineering.

8-1: Have correct values, a progressive aesthetic, an understanding of the relationship between the individual and society, and an understanding of the Chinese national context.
8-2: Understand the engineering ethics and codes of ethics of honesty and fairness and integrity, with the spirit of the workforce as a value, and to be able to observe them consciously in the practice of computer engineering.

8-3: Understand the social responsibility of computer engineers for the safety, health and well-being of the public, and for environmental protection, and be able to exercise conscious responsibility in engineering practice.
9. Individual and team: Have consciousnesses and ability to work in teams and to assume the role of individual, team member and leader in a multidisciplinary context.

9-1: Have the ability to exercise independently and to communicate effectively and work cooperatively with members of other disciplines.
9-2: Be able to find the place in a team, integrate successfully into the team and work independently or collaboratively.

9-3: Be able to organize, coordinate and direct the work of a team.
10. Communication: Have the ability to communicate effectively with industry peers and the public on complex Software Engineering issues, including writing reports and design briefs, presenting statements, articulating or responding to instructions, and having an international perspective and the ability to communicate and interact in
a cross-cultural context.
10-1: Be able to express their thoughts and wishes effectively on the Program of Software Engineering issues, verbally, in writing, graphically, in response to queries, and understand the differences in communication with industry peers and the public.

10-2: Be aware of international trends and research hotspots in the field of the Program of Software Engineering and to understand and respect the differences and diversity of different cultures around the world.
10-3: Demonstrated verbal and written intercultural communication skills and the ability to communicate in a basic intercultural context regarding the Program of Software Engineering issues.
11. Project Management: Have understanding and knowledge of project management and economic decision-making methods in the field of Software Engineering and their application in a multidisciplinary environment.
11-1: Understand economic decision-making methods for software projects, understand the design process and management methods for software projects and products, and be able to analyse the economic and social benefits of software projects in a multidisciplinary environment, and analyse and judge their overall benefits.
11-2: Understand Software Engineering and the cost components of the full cycle and process of a product, and understand the Project Management and economic decision making issues involved.
11-3: Be able to apply project management and economic decision-making methods in the design and development of software project solutions in a multidisciplinary environment (including simulation).
12. Spirit and ability of lifelong learning: Have a sense of independent and lifelong learning, with the ability to learn and adapt to development.

12-1: Be able to recognize the need for self-directed and lifelong learning in the wider context of social development.
12-2: Be able to learn independently, understand technical issues and summarize and ask questions, etc.

## III. Schooling System

Four years.

## IV. Length of Study

Flexible study period, generally four years, the minimum length of flexibility is not less than three years, the longest not more than six years.

## V. Requirements for Graduation and Degree Conferring

To graduate, students must complete the minimum number of credits required by the Instructive Cultivation Plan for each category of study and all the content required by the Extracurricular Class, with a total of 164 credits, and a Bachelor's degree in Software Engineering if they meet the requirements for the award of a Bachelor's degree.

## VI. Discipline

Software Engineering

## VII. Core Courses

Fundamentals of Programming, Discrete Mathematics, Data Structures and Algorithms, Introduction to Database Systems, Java Programming, Introduction to Software Engineering, Algorithm Design and Analysis, Software Quality Assurance and Testing, Object Oriented Analysis and Design, Software Project Management, Non-Relational Database Practicum, Software Design and Development I, II, III.

## VIII. Course Structure and Course Hours (excluding Extracurricular Class)

| Category | Total <br> Credit | \% | Total <br> Course <br> Hours | Theory <br> Learning | Practical <br> Training |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Public Fundamental Course | 57.5 | 35 | 1056 | 976 | 80 |
| General Education | 10 | 6 | 160 | 160 | 0 |
| Engineering Fundamental <br> Course | 9 | 5 | 144 | 135 | 9 |
| Professional Fundamental <br> Course | 31 | 19 | 496 | 401 | 95 |
| Professional Course | 26 | 16 | 416 | 289 | 127 |
| Professional Practice | 29.5 | 19 | 856 | 0 | 856 |
| Total | 163 | 100 | 3128 | 1961 | 1167 |
| Theory: Practical (\%) |  | $63: 37$ |  |  |  |

## IX. Teaching schedule (1)

| Category | Type | Provided by | Course <br> Code | Course Name | Assessment | Credit | Course <br> Hours | Theory <br> Learning | Practical <br> Training | Recommended semester |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PublicFundamentalCourse | required | School of Marxism | b1080001 | Basic Principles of Marxism | test | 3 | 48 | 42 | 6 | Spring 1 |
|  | required | School of Marxism | b1080009 | Ethics and the Rule of Law | non-test | 3 | 48 | 42 | 6 | Spring 1 |
|  | required | School of Marxism | b1080006 | Outline of Modern Chinese History | non-test | 3 | 48 | 42 | 6 | Autumn 1 |
|  | required | School of Marxism | b1080004 | Introduction to Mao Zedong Thought and the Theoretical System of Socialism with Chinese Characteristics I | test | 3 | 48 | 42 | 6 | Autumn 2 |
|  | required | School of Marxism | b1080007 | Introduction to Mao Zedong Thought and the Theoretical System of Socialism with Chinese Characteristics II | test | 2 | 32 | 28 | 4 | Spring 2 |
|  | required | School of Marxism | ----- | Situation and Policy (Modules 1 to 4) | non-test | 2 | 32 | 28 | 4 | Autumn 1 to Spring 2 |
|  | required | School of Marxism | b1080008 | Labour Education A | non-test | 0.5 | 16 | 16 |  | Autumn 2 |
|  | required | College of Arts and Sciences | b1020112 | Advanced Mathematics D1 | test | 5 | 80 | 80 |  | Autumn 1 |
|  | required | College of Arts and Sciences | b1020113 | Advanced Mathematics D2 | test | 5 | 80 | 80 |  | Spring 1 |
|  | required | College of Arts and Sciences | b1020108 | Linear Algebra | test | 3 | 48 | 48 |  | Autumn 2 |
|  | required | College of Arts and Sciences | b1020114 | Probability Theory and Mathematical Statistics | test | 3 | 48 | 48 |  | Autumn 2 |
|  | required | College of Arts and Sciences | b1020018 | Academic Chinese | non-test | 2 | 32 | 32 |  | Spring 1 |
|  | required | College of Arts and Sciences | b1020063 | Academic Physics A (Module 2) | test | 3 | 48 | 48 |  | Spring 1 |
|  | required | College of Arts and Sciences | b1020065 | Academic Physics B | test | 2 | 32 | 32 |  | Autumn 2 |
|  | required | College of Arts and Sciences | b1020111 | Academic Physics C | non-test | 2 | 32 |  | 32 | Autumn 2 |
|  | required | College of Physical Education | -- | Physical Education I to VI | non-test | 3 | 160 | 160 |  | Autumn 1 to Autumn 4 |
|  | required | Others | b1110003 | Military skills | non-test | 0.5 | 2W |  |  | Autumn 1 |
|  | required | College of Arts and Sciences | b1110002 | Military theory | non-test | 0.5 | 32 | 32 |  | Autumn 2 |
|  | required | Others | b1110004 | Mental Health Education for University Students | non-test | 2 | 32 | 16 | 16 | Spring 1 |
|  | Academic <br> English <br> (select 1 <br> module for 10 credits) | Module A | b1020003 | General English III | test | 3 | 48 | 48 |  | Autumn 1 |
|  |  |  | -b1020004 | General English IV | test | 3 | 48 | 48 |  | Spring 1 |
|  |  |  | b1020005 | General Academic English A | test | 2 | 32 | 32 |  | Autumn 2 |
|  |  |  | ---- | English Knowledge Expansion | non-test | 2 | 32 | 32 |  | Spring 2 |
|  |  | Module B | b1020002 | General English II | test | 3 | 48 | 48 |  | Autumn 1 |
|  |  |  | b1020003 | General English III | test | 3 | 48 | 48 |  | Spring 1 |
|  |  |  | b1020006 | General Academic English B | test | 2 | 32 | 32 |  | Autumn 2 |
|  |  |  | --- | English Knowledge Expansion | non-test | 2 | 32 | 32 |  | Spring 2 |
|  |  | Module C | b1020001 | General English I | test | 4 | 64 | 64 |  | Autumn 1 |
|  |  |  | b1020002 | General English II | test | 3 | 48 | 48 |  | Spring 1 |
|  |  |  | b1020003 | General English III | test | 3 | 48 | 48 |  | Autumn 2 |
|  | Academic German | College of Arts and Sciences | b1020040 | Academic German I | test | 3 | 48 | 48 |  | Autumn 1 |
|  |  | College of Arts and Sciences | b1020041 | Academic German II | test | 3 | 48 | 48 |  | Spring 1 |
|  |  | College of Arts and Sciences | b1020042 | Academic German III | test | 4 | 64 | 64 |  | Autumn 2 |
|  | Academic Japanese | College of Arts and Sciences | b1020077 | Academic Japanese I | test | 3 | 48 | 48 |  | Autumn 1 |
|  |  | College of Arts and Sciences | b1020078 | Academic Japanese II | test | 3 | 48 | 48 |  | Spring 1 |
|  |  | College of Arts and Sciences | b1020079 | Academic Japanese III | test | 4 | 64 | 64 |  | Autumn 2 |
|  |  |  |  | Subtotal (Public Fundamental Course) |  | 57.5 | 1056 | 976 | 80 |  |
| General <br> Education | selective | Art Education Center | b0----- | Aesthetic Education | non-test | 2 | 32 | 32 |  | Autumn, Spring |
|  | selective | Each College | b0----- | Social Sciences and Humanistic Oualities | non-test | 4 | 64 | 64 |  | Autumn, Spring |
|  |  |  |  | Natural Sciences and Technology Innovation | non-test | 4 | 64 | 64 |  | Autumn, Spring |
| Subtotal (General Education) |  |  |  |  |  | 10 | 160 | 160 |  |  |

 Academic English is chosen, please choose the appropriate module in Module A, B, C)

## IX. Teaching schedule (2)



## IX. Teaching schedule (3)

| Category | Type | Provided by | Course Code | Course Name | Assessment | Credit | Course Hours | Theory Learning | Practical Training | Recommended semester |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Professional Practice | required | School of Computer and Information Engineering | b4012005 | Programming and Practice | non-test | 2 | 48 |  | 48 | Summer 1 |
|  | required | School of Computer and Information Engineering | b4012051 | Data Structures and Algorithms Course Placement | non-test | 3 | 72 |  | 72 | Summer 1 |
|  | required | School of Computer and Information Engineering | b4012054 | Database Systems Course Placement | non-test | 2 | 48 |  | 48 | Summer 2 |
|  | required | School of Computer and Information Engineering | b4012154 | Software Design and Development I | non-test | 1 | 24 |  | 24 | Summer 2 |
|  | required | School of Computer and Information Engineering | b4012155 | Software Design and Development II | non-test | 2 | 48 |  | 48 | Summer 2 |
|  | required | School of Computer and Information Engineering | b4012187 | Non-relational database internships | non-test | 2 | 48 |  | 48 | Autumn 3 |
|  | required | School of Computer and Information Engineering | b4012186 | Labour Education B | non-test | 0.5 | 16 |  | 16 | Spring 3 |
|  | required | School of Computer and Information Engineering | b4012048 | Software Quality Assurance and Testing Internship | non-test | 2 | 48 |  | 48 | Summer 3 |
|  | required | School of Computer and Information Engineering | b4000014 | $\begin{array}{l}\text { the } \\ \text { Entrepreneurship }\end{array}$ of Software Engineering Innovation and | non-test | 2 | 48 |  | 48 | Summer 3 |
|  | required | School of Computer and Information Engineering | b4012201 | Software Design and Development III | non-test | 3 | 72 |  | 72 | Autumn 4 |
|  | required | School of Computer and Information Engineering | b4012130 | Software Engineering Graduation Internship and Graduation Design (Thesis) | non-test | 6 | 288 |  | 288 | Spring 4 |
|  |  |  |  | Subtotal(Required Professional Practice) |  | 25.5 | 760 |  | 760 |  |
|  | select <br> different <br> courses in <br> different <br> modules <br> for 4 <br> credits | Module A | b4012158 | Website Architecture Project | non-test | 2 | 48 |  | 48 | Spring 3 |
|  |  | Module B | b4012203 | Mobile terminal development projects | non-test | 2 | 48 |  | 48 | Spring 3 |
|  |  | Module C | b4012202 | Intelligent Analytics Application Project | non-test | 2 | 48 |  | 48 | Spring 3 |
|  | Subtotal(Selective Professional Practice) |  |  |  |  | 4 | 96 |  | 96 |  |
|  |  |  |  | Subtotal(Professional Practice) |  | 29.5 | 856 |  | 856 |  |
| Extracurricular Class | required | Others | b5110001 | Extracurricular Class | non-test | 1 | - | - | - | Autumn, Spring, Summer |
| Total |  |  |  |  |  | 164 | 3128 | 1961 | 1167 |  |

## $\star$ Description of Selective Professional Course and Selective Practice:

Description of selective modules: Please select any 2 modules; professional practice modules must be taken in accordance with the corresponding professional course modules.

1) Module A: Web Application Development

Focuses on in-depth knowledge of Web front-end development technologies, Java Web site development and web framework principles.

## 2) Module B: Mobile Application Development

Focuses on in-depth knowledge of web front-end development technologies, human-computer interaction technologies and mobile terminal application development.

## 3) Module C: Intelligent Analysis and Applications

Focuses on in-depth knowledge of Python Programming, data analysis and applications, machine learning and more.

## X. Prerequisite for Course Study

| No. | Course Name | Prerequisite Course |
| :---: | :--- | :--- |
| 1 | Data Structures and Algorithms | Introduction to the Program of Software Engineering, Fundamentals of <br> Programming, Discrete Mathematics |
| 2 | Introduction to Database Systems | Data Structures and Algorithms |
| 3 | Introduction to Software Engineering | Introduction to the Program of Software Engineering |
| 4 | Object Oriented Analysis and Design | Data Structures and Algorithms, Introduction to Software Engineering |
| 5 | Software Quality Assurance and Testing | Introduction to Software Engineering |
| 6 | Software Project Management | Introduction to Software Engineering, Data Structures and Algorithms |
| 7 | Algorithm design and analysis | Discrete Mathematics, Data Structures and Algorithms |
| 8 | Software Design and Development I | Web front-end development skills |
| 9 | Software Design and Development II | Java Programming |
| 10 | Software Design and Development III | Software Design and Development I, Software Design and Development II |
| 11 | Intelligent Analytics Application Project | Introduction to Artificial Intelligence, Data Analysis and Applications, Machine <br> Learning |
| 12 | Website Architecture Project | Web front-end development technology, Java programming, web development <br> technology, web framework principles and applications |
| 13 | Mobile terminal development projects | Web front-end development technology, Java programming, intelligent <br> interaction technology, mobile terminal software development |

## XI. Credit of Extracurricular Class

Through taking extracurricular classes, students are encouraged to take part in academic lectures, social practice activities, campus cultural and sports activities, innovative and entrepreneurial activities, voluntary activities, etc. to improve their social adaptability and enhance the competitiveness in the job market. Details are specified in Students' Manual.

